Pipeline Technology Journal - 2/2025 RESEARCH • DEVELOPMENT • TECHNOLOGY 63 References 1. Cruden, D.M.; Varnes, D.J. Landslide Types and Processes In: Turner, A.K. and Shuster, R.L., Eds., Landslides: Investigation and Mitigation, Transportation Research Board, Special Report No. 247, 36-75; 1996; 2. Vasseghi, A.; Haghshenas, E.; Soroushian, A.; Rakhshandeh, M. Failure Analysis of a Natural Gas Pipeline Subjected to Landslide. Eng Fail Anal 2021, 119, 105009, doi:10.1016/j.engfailanal.2020.105009. 3. Savigny, K.W.; Porter, M.J.; Leir, M. Geohazard Risk Management for the Onshore Pipeline Industry. The Oil and Gas Review 2005, 2, 1–3. 4. Sweeney, M. Terrain and Geohazard Challenges for Remote Region Onshore Pipelines: Risk Management, Geoteams and Ground Models. Quarterly Journal of Engineering Geology and Hydrogeology 2017, 50, 13–52, doi:10.1144/qjegh2016-074. 5. Ferris, G.; Newton, S.; Porter, M. Vulnerability of Buried Pipelines to Landslides. In Proceedings of the 11th International Pipeline Conference; American Society of Mechanical Engineers, September 26 2016; p. 64071. 6. Esford, F.; Porter, M.; Savigny, K.W.; Muhlbauer, W.K.; Dunlop, C. A Risk Assessment Model for Pipelines Exposed to Geohazards. In Proceedings of the Proceedings of the Biennial International Pipeline Conference, IPC, October 4 - 8, 2004; Calgary, Alberta, Canad, 2004. 7. European Gas Pipeline Incident Data Group (EGIG) Gas Pipeline Incidents: 9th Report of the European Gas Pipeline Incident Data Group (Period 1970 - 2013). Doc. Number EGIG 14.R.0403; Groningen, the Netherlands, 2015; 8. Nyman, D.J.; Lee, E.M.; Audibert, J.M.E. Mitigating Geohazards for International Pipeline Projects: Challenges and Lessons Learned. In Proceedings of the 7th International Pipeline Conference; ASMEDC, January 1 2008; pp. 639–648. 9. Vasseghi, A.; Haghshenas, E.; Soroushian, A.; Rakhshandeh, M. Failure Analysis of a Natural Gas Pipeline Subjected to Landslide. Eng Fail Anal 2021, 119, 105009, doi:10.1016/j.engfailanal.2020.105009. 10. O’Rourke, M.J.; Liu, X. Seismic Design of Buried and Offshore Pipelines; Buffalo, New York, 2012; 11. Bartlett, S.F.; Lingwall, B.N.; Vaslestad, J. Methods of Protecting Buried Pipelines and Culverts in Transportation Infrastructure Using EPS Geofoam. Geotextiles and Geomembranes 2015, 43, 450–461, doi:10.1016/j.geotexmem.2015.04.019. 12. Mokhtari, M.; Alavi Nia, A. The Influence of Using CFRP Wraps on Performance of Buried Steel Pipelines under Permanent Ground Deformations. Soil Dynamics and Earthquake Engineering 2015, 73, 29–41, doi:10.1016/j.soildyn.2015.02.014. 13. Alvarado-Franco, J.P.; Castro, D.; Estrada, N.; Caicedo, B.; Sánchez-Silva, M.; Camacho, L.A.; Muñoz, F. Quantitative- Mechanistic Model for Assessing Landslide Probability and Pipeline Failure Probability Due to Landslides. Eng Geol 2017, 222, 212–224, doi:10.1016/j.enggeo.2017.04.005. 14. Li, G.; Zhang, P.; Li, Z.; Ke, Z.; Wu, G. Safety Length Simulation of Natural Gas Pipeline Subjected to Transverse Landslide. World Journal of Engineering and Technology 2023, 11, 67–80, doi:10.4236/wjet.2023.111007. 15. Zhang, L.; Fang, M.; Pang, X.; Yan, X.; Cao, Y. Mechanical Behavior of Pipelines Subjecting to Horizontal Landslides Using a New Finite Element Model with Equivalent Boundary Springs. Thin-Walled Structures 2018, 124, 501–513, doi:10.1016/j.tws.2017.12.019. 16. Miles, S.B.; Keefer, D.K. Evaluation of CAMEL — Comprehensive Areal Model of Earthquake- Induced Landslides. Eng Geol 2009, 104, 1–15, doi:10.1016/j.enggeo.2008.08.004. 17. Zhang, L.; Xie, Y.; Yan, X.; Yang, X. An Elastoplastic Semi- Analytical Method to Analyze the Plastic Mechanical Behavior of Buried Pipelines under Landslides Considering Operating Loads. J Nat Gas Sci Eng 2016, 28, 121–131, doi:10.1016/j.jngse.2015.11.040. 18. Chaudhuri, C.H.; Choudhury, D. Buried Pipeline Subjected to Seismic Landslide: A Simplified Analytical Solution. Soil Dynamics and Earthquake Engineering 2020, 134, 106155, doi:10.1016/j.soildyn.2020.106155. 19. Feng, W.; Huang, R.; Liu, J.; Xu, X.; Luo, M. Large- Scale Field Trial to Explore Landslide and Pipeline Interaction. Soils and Foundations 2015, 55, 1466– 1473, doi:10.1016/j.sandf.2015.10.011. 20. Katebi, M.; Maghoul, P.; Blatz, J. Numerical Analysis of Pipeline Response to Slow Landslides: Case Study. Canadian Geotechnical Journal 2019, 56, 1779–1788, doi:10.1139/cgj-2018-0457. 21. Zhang, S.-Z.; Li, S.-Y.; Chen, S.-N.; Wu, Z.-Z.; Wang, R.- J.; Duo, Y.-Q. Stress Analysis on Large-Diameter Buried Gas Pipelines under Catastrophic Landslides. Pet Sci 2017, 14, 579–585, doi:10.1007/s12182-017-0177-y. 22. American Lifelines Alliance Guidelines for the Design of Buried Steel Pipe; American Society of Civil Engineers: Reston, VA, 2001; AuthorS Nikolaos Makrakis Technical University of Crete PhD Candidate nmakrakis@tuc.gr Prodromos N. Psarropoulos National Technical University of Athens Structural & Geotechnical Engineer prod@central.ntua.gr Yiannis Tsompanakis Technical University of Crete Professor of Computational Dynamics & Earthquake Engineering jt@science.tuc.gr